Evaluating the Effect of Semantic Enrichment on Entity Embeddings of IoT Knowledge Graphs

Roderick van der Weerdt, Victor de Boer, Laura Daniele, Ronald Siebes and Frank van Harmelen May 28th, 2023

Interconnect

Introduction Setting the scene

- Ongoing effort to collect IoT data
 - For example in IoT Knowledge Graphs
- There are benefits to learning over KGs
- Can we learn directly over the IoT KG?
 - Or do IoT KGs require changes?

Introduction Setting the scene

- Ongoing effort to collect IoT data
 - For example in IoT Knowledge Graphs
- There are benefits to learning over KGs
- Can we learn directly over the IoT KG?
 - Or do IoT KGs require changes?

What is the effect of semantically enriching an IoT KG, based on the quality of entity embeddings learned from it?

Introduction What is an IoT KG?

 Represent IoT measurement data

• "Wide" Graph

Many measurements

Introduction What is Semantic Enrichment?

 Making implicit information explicitly available

Introduction What are Entity Embeddings?

Image taken from Wikipedia: https://upload.wikimedia.org/wikipedia/commons/3/3f/KnowledgeGraphEmbedding.pnc

Introduction Why do we need Entity Embeddings?

Image taken from Wikipedia: https://upload.wikimedia.org/wikipedia/commons/3/3f/KnowledgeGraphEmbedding.pnc

Introduction Research question

What is the effect of semantically enriching an IoT KG, based on the quality of entity embeddings learned from it?

Introduction **Research question**

What is the effect of semantically enriching an IoT KG, based on the quality of entity embeddings learned from it?

Experimental Pipeline Overview

Experimental Pipeline Overview

• Step 1: Semantic Enrichment

• Step 2: Embedding

• Step 3: Evaluation

Experimental Pipeline Semantic Enrichment step

Rounded value

- Sequence links
- Timestamp

curacy
compare
curacy

Experimental Pipeline Embedding step

RDF2vec

• Walk length of 2

25 walks per entity

curacy
compare
curacy

Experimental Pipeline Embedding step

RDF2vec

• Walk length of 2

25 walks per entity

curacy
compare
curacy

Experimental Pipeline Evaluation step - Classification Task

 Separated all timepoints based on outside temperature

Labeled warmest half "warm" & coldest half "cold"

Experimental Pipeline Evaluation step - Accuracy comparison

 Experiment is performed with both the original graph and enriched graph

Accuracies are compared

Experimental Pipeline Dataset

• OPSD Household dataset

• Hourly measurements

Made into a IoT KG

					dev	ice type	es			
residence id	grid import	grid export	νd	dishwasher	ev	refridgerator	freezer	heat pump	washing machine	circulation pump
res1	1		1	1			1	1	1	
res2	1			1			1		1	1
res3	1	1	1	1		1	1		1	1
res4	1	1	1	1	1	1	1	1	1	
res5	1			1		1			1	
res6	1	1	1	1			1		1	1
total	6	3	4	6	1	3	5	2	6	3

curacy	
•	
compare	
•	
curacy	

Experimental Pipeline Dataset

• res1dev1:

1 device from 1 residence

- res1devA All devices from 1 residence
- resAdevA All devices from All residences

- res²
- res⁵
- rese

					devi	ice type	es			
residence id	grid import	grid export	рv	dishwasher	θV	refridgerator	freezer	heat pump	washing machine	circulation pump
res1	1	and an Ersen and an array	1	1	A		1	1	1	
res2	1			1			1		1	1
res3	1	1	1	1	A. 7 9-14-20 00-1-	1	1		1	1
res4	1	1	1	1	1	1	1	1	1	
res5										
res6	1	1	1	1	the second second	the Mary of the Second	1		1	1
total	6	3	4	6	1	3	5	2	6	3

curacy
•
compare
curacy

Results Average accuracies of the classifiers

 Enriched outperforms basic every time

 More "useless" devices have a negative impact

 More "useful" devices have a positive impact

Discussion **Ongoing Research**

- Using a different evaluation task
 - Value prediction
- Using a different embedding method
 - ► GCN
- Using different datasets
 - Pecan street (American consumption data)

Ongoing Research Average accuracies of the classifiers - RDF2vec & GCN

GCN

RDF2vec

Ongoing Research Average accuracies of the VALUE PREDICTOR - RDF2vec & GCN

RDF2vec

Conclusion

entity embeddings learned from it

What is the effect of semantically enriching an IoT KG, based on the quality of entity embeddings learned from it?

Conclusion

entity embeddings learned from it

What is the effect of semantically enriching an IoT KG, based on the quality of entity embeddings learned from it?

