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Introduction
Setting the scene

• Ongoing effort to collect IoT data


‣ For example in IoT Knowledge Graphs


• There are benefits to learning over KGs


• Can we learn directly over the IoT KG?


‣ Or do IoT KGs require changes?
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Introduction
What is an IoT KG?

• Represent IoT measurement 
data


• “Wide” Graph


• Many measurements
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• Making implicit information 
explicitly available
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What are Entity Embeddings?
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Introduction
Why do we need Entity Embeddings?
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Introduction
Research question

What is the effect of semantically enriching an IoT KG, based on the quality of 
entity embeddings learned from it?
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• Step 1: Semantic Enrichment


• Step 2: Embedding


• Step 3: Evaluation
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Semantic Enrichment step
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• Rounded value


• Sequence links


• Timestamp
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Experimental Pipeline
Evaluation step - Classification Task
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• Separated all timepoints based 
on outside temperature


• Labeled warmest half “warm” 
& coldest half “cold”


• Trained a MLP to classify 
timepoints based on label
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Experimental Pipeline
Evaluation step - Accuracy comparison
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• Experiment is performed with 
both the original graph and 
enriched graph


• Accuracies are compared
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Distribution of device types over residences in OPSD Household dataset.
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Table 2 shows the distributions of the different device types over each separate residence.3

The dataset contains measurements taken over a five years duration, but not every device
recorded measurements for the entire period. In order to have a complete dataset we chose to
extract a subset of ten months where all devices had recorded measurements, by removing only
two devices (the freezer from residence 2, and the grid export from residence 6), if we would
have included these the measurements would only be available for two months.
The final manipulation of the data was transforming the energy consumption measure-

ment from its original value of accumulated consumption from the startpoint, to accumulated
consumption over the last hour. This manipulation was performed to ensure that the measure-
ment values in the graph would be recurring, which would not be the case for accumulated
measurement values because those would only increase.

The final graph represents 8133 timestamp entities linking to measurements from 37 devices
from ten device types, spread out over six residences. Three different versions of this graph
were created in order to be able to distinguish between the effects of adding more devices from
within the same home, and adding devices from other homes. The following shorthand is used
to refer to different compositions of the graph:
res1dev1: this graph uses only measurements of one device. this is the heatpump from

residence 4. This graph contains 89477 triples.
res1devA: this graph uses all measurements from all devices in one home, in this case, all

devices from residence 4. This graph contains 715,765 triples.
resAdevA: this graph uses all measurements from all devices in all available homes that are

available. It contains 3,220,912 triples.

3The IoT KGs can be found at: https://github.com/RoderickvanderWeerdt/SAREFized-OPSD-household-graph

• OPSD Household dataset


• Hourly measurements


• 8133 timepoints (±11 months)


• Made into a IoT KG
https://data.open-power-system-data.org/household_data/2020-04-15
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ment from its original value of accumulated consumption from the startpoint, to accumulated
consumption over the last hour. This manipulation was performed to ensure that the measure-
ment values in the graph would be recurring, which would not be the case for accumulated
measurement values because those would only increase.

The final graph represents 8133 timestamp entities linking to measurements from 37 devices
from ten device types, spread out over six residences. Three different versions of this graph
were created in order to be able to distinguish between the effects of adding more devices from
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3The IoT KGs can be found at: https://github.com/RoderickvanderWeerdt/SAREFized-OPSD-household-graph

• res1dev1:  
1 device from 1 residence 

• res1devA 
All devices from 1 residence 

• resAdevA 
All devices from All residences

https://data.open-power-system-data.org/household_data/2020-04-15



Results
Average accuracies of the classifiers 

• Enriched outperforms basic 
every time


• More “useless” devices have a 
negative impact


• More “useful” devices have a 
positive impact



Discussion
Ongoing Research

• Using a different evaluation task


‣ Value prediction


• Using a different embedding method


‣ GCN


• Using different datasets


‣ Pecan street (American consumption data)



Ongoing Research
Average accuracies of the classifiers - RDF2vec & GCN

• 0 GCN RDF2vec



Ongoing Research
Average accuracies of the VALUE PREDICTOR - RDF2vec & GCN
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What is the effect of semantically enriching an IoT KG, based on the quality of 
entity embeddings learned from it? 

• In this setting, enriching an IoT KG has a positive effect on the quality of 
entity embeddings learned from it

Conclusion
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Thank you for listening


