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Introduction

Setting the scene

* Ongoing effort to collect loT data

> For example in loT Knowledge Graphs
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* There are benefits to learning over KGs

 Can we learn directly over the loT KG?

> Or do loT KGs require changes?

Evaluating the Effect of Semantic Enrichment on Entity Embeddings of loT Knowledge Graphs
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What is the effect of semantically enriching an loT KG,
based on the quality of entity embeddings learned from it?

Evaluating the Effect of Semantic Enrichment on Entity Embeddings of loT Knowledge Graphs



Introduction
What is an loT KG?

 Represent lol measurement
data

 “Wide” Graph

 Many measurements
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Introduction

What is Semantic Enrichment?

 Making implicit information

explicitly available
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Introduction
What are Entity Embeddings?

Knowledge Graph Embedded Representation

0.6

0.5

0.9

Image taken from Wikipedia: https://upload.wikimedia.org/wikipedia/commons/3/3f/KnowledgeGraphEmbedding.png

Entity Embeddings of loT Knowledge Graphs
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Introduction
Why do we need Entity Embeddings?

Knowledge Graph Embedded Representation Machine Learning Task
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Entity Embeddings of loT Knowledge Graphs
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Introduction

Research question

What is the effect of semantically enriching an loT KG, based on the quality of
entity embeddings learned from it?
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What is the effect of semantically enriching an loT KG, based on the quality of
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Evaluating the Effect



Experimental Pipeline

Overview
Basic Entity
Graph Embeddings
Embedding Classification

Model Task

Accuracy

compare

Enriched Entity Accurac
Graph Embeddings ’



Basic Entity
Embeddings
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e Step 1: Semantic Enrichment

e Step 2: Embedding

e Step 3: Evaluation



Experimental Pipeline

Semantic Enrichment step

e Rounded value
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Entity
Embeddings

Experimental Pipeline .-
Embedding step
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Experimental Pipeline

Embedding step

 RDF2vec

 Walk length of 2

e 25 walks per entity

Entity
Embeddings

Enriched Entity
Graph Embeddings
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Experimental Pipeline

Evaluation step - Classification Task

o Separated all timepoints based
on outside temperature

e [ abeled warmest half “warm”
& coldest half “cold”

* Trained a MLP to classify
timepoints based on label
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Experimental Pipeline

Evaluation step - Accuracy comparison s
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 Experiment is performed with P
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Experimental Pipeline

Dataset

e OPSD Household dataset

device types
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https://data.open-power-system-data.org/household_data/2020-04-15



Experimental Pipeline

Dataset

device types

1 device from 1 residence
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Results

Average accuracies of the classifiers

* Enriched outperforms basic .
every tlme HEl basic
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Discussion
Ongoing Research

* Using a different evaluation task
> Value prediction

* Using a different embedding method
> GCN

* Using different datasets

> Pecan street (American consumption data)



Ongoing Research

Average accuracies of the classifiers - RDF2vec & GCN
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Ongoing Research
Average accuracies of the VALUE PREDICTOR - RDF2vec & GCN
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Conclusion

What is the effect of semantically enriching an loT KG, based on the quality of
entity embeddings learned from it?

* |In this setting, enriching an loT KG has a positive effect on the quality of
entity embeddings learned from it
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