
First International Workshop on Semantic Web on Constrained Things

Generating Visual Programming Blocks based on
Semantics in W3C Thing Descriptions
—
Michael Freund, Justus Fries, Thomas Wehr, Andreas Harth

28/05/2023

public

Agenda

Page 2

1. Introduction and Motivation

2. From TDs to Blocks and Code

3. Mapping Algorithm

4. Performance Evaluation

5. Conclusion and Future Work

© Fraunhofer IIS28/05/2023

public

Introduction and Motivation

Page 3

Initial Situation

 Constrained devices are used in industry and consumer applications to sense and act on the environment

 W3C Web of Things:

 Simplify device interaction

 Utilize semantic API descriptions (TD)

 Experts can use WoT Scripting API for text based programming languages

 Everyday users can use graphical tools

© Fraunhofer IIS28/05/2023

public

Introduction and Motivation

Page 4

What is the problem?

 A Block requires:

 a structural definition – describing the layout

 a source code generator function – defining code that is generated

© Fraunhofer IIS28/05/2023

public

Introduction and Motivation

Page 5

What is the problem?

 A Block requires:

 a structural definition – describing the layout

 a source code generator function – defining code that is generated

 In a Wot context: all interaction affordances of a device need a separate block and code definition.

Problem I.) All definitions must be implemented by hand, even if a TD is available

 Limits the number of supported devices in visual programming environments (VPE)

Problem II.) Starting from a TD, it is hard to discover related devices

 Limits the number of devices to interact with

© Fraunhofer IIS28/05/2023

public

Introduction and Motivation

Page 6

Why is it interesting and important?

 TDs are implemented with machine readability in mind

 An algorithm could use the semantic information contained in a TD to generate blocks/code and follow links

 Extends the flexibility of VPEs

 Allows users to interact with arbitrary constrained devices (TD)

 Improves device discoverability

© Fraunhofer IIS28/05/2023

public

Agenda

Page 9

1. Introduction and Motivation

2. From TDs to Blocks and Code

3. Mapping Algorithm

4. Performance Evaluation

5. Conclusion and Future Work

© Fraunhofer IIS28/05/2023

public

From TDs to Blocks and Code

Page 10

Structure of a Thing Description

 RDF document in JSON-LD serialization

 Keywords are mapped to ontology terms via a context (e.g. title -> td:title, op -> hctl:hasOperationType)

© Fraunhofer IIS28/05/2023

Structure of generated Blocks

 TDs consist of mandatory and optional property keywords -> information in generated blocks varies

 Follow abstraction of WoT Scripting API, to simplify the transition to text based programming

 Two Phases:

 To read a property: thing.readProperty('status');

Creation phase:

 TD is consumed

 Thing object is created

Interaction phase:

 Thing object used to call functions

 readProperty, writeProperty,

invokeAction, subscribeEvent

public

From TDs to Blocks and Code

Page 11

Example TD

© Fraunhofer IIS28/05/2023

TD

 Metadata

"@context": "https://www.w3.org/2022/wot/td/v1.1",

"@type": "Thing",

"id": "urn:dev:ops:32473-WoT-Thing-1234",

"title": "LampThing",

"titles": { "en": "LampThing", "de": "LampenDing"},

"description": "A lamp",

"descriptions": { "en": "A lamp", "de": "Eine Lampe"},

"version": "1.0", "created": "2020-10-10T17:00:00Z",

"modified": "2022-10-10T17:00:00Z",

"support": "https://example.org/lamp",

"links": [{

"href": "http://example.com/related-td",

"type": "application/td+json„

}]

"securityDefinitions": {

"basic_sc": {"scheme": "basic", "in": "header"}

},

"security": ["basic_sc"],

public

From TDs to Blocks and Code

Page 12

Example TD

© Fraunhofer IIS28/05/2023

TD

 Metadata

 Properties:

 status (read)

"properties": {

"status": {

"title": "status",

"titles": {"en": "status", "de": "Zustand"},

"description": "Read the status of the lamp",

"descriptions": {

"en": "Read the status of the thing",

"de": "Auslesen des Lampenzustands„

},

"type": "string",

"forms": [...]

}

},

public

From TDs to Blocks and Code

Page 13

Example TD

© Fraunhofer IIS28/05/2023

TD

 Metadata

 Properties:

 status (read)

 Actions:

 toggle

"actions": {

"toggle": {

"title": "toggle",

"titles": {"en": "toggle", "de": "umschalten"},

"description": "Toggle current lamp status",

"descriptions": {

"en": "Toggle current lamp status",

"de": "Umschalten des aktuellen Lampenstatus„

},

"output": {"type": "string"},

"forms": [...],

}

},

public

From TDs to Blocks and Code

Page 14

Example TD

© Fraunhofer IIS28/05/2023

TD

 Metadata

 Properties:

 status (read)

 Actions:

 toggle

 Events:

 overheating

"events": {

"overheating": {

"title": "overheating",

"titles": {"en": "overheating", "de": "Ueberhitzung"},

"description": "An overheating event of the lamp",

"descriptions": {

"en": "An overheating event of the lamp",

"de": "Ein Ueberhitzungs Event der Lampe„

},

"data": {"type": "string"},

"forms": [...],

}

},

public

From TDs to Blocks and Code

Page 15

Mapping of Thing Vocabulary

 Only @context, title, security, and securityDefinitions are mandatory

© Fraunhofer IIS28/05/2023

public

From TDs to Blocks and Code

Page 16

Mapping of Property Affordance Vocabulary

 Properties are available in two types: readProperties and writeProperties

© Fraunhofer IIS28/05/2023

public

From TDs to Blocks and Code

Page 17

Mapping of Action Affordance Vocabulary

 4 different layouts of action blocks (input, output, neither, both)

© Fraunhofer IIS28/05/2023

public

From TDs to Blocks and Code

Page 18

Mapping of Event Affordance Vocabulary

 Event blocks are statement inputs instead of value inputs

 Data type of 'eventVar' defined via data property keyword

© Fraunhofer IIS28/05/2023

public

From TDs to Blocks and Code

Page 19

Link Following Vocabulary

 Link following is a fundamental aspect of the Web to find and explore related Web resources

 Same concept can be used in the Web of Things via the links property keyword

 Only href mandatory

© Fraunhofer IIS11/07/2022

"links": [{

"href": "http://example.com/related-td",

"type": "application/td+json",

"rel": "contolledBy"

}]

public

Agenda

Page 20

1. Introduction and Motivation

2. From TDs to Blocks and Code

3. Mapping Algorithm

4. Performance Evaluation

5. Conclusion and Future Work

© Fraunhofer IIS11/07/2022

public

Mapping Algorithm

Page 22

Implementation of an Algorithm

 PoC implementation using JavaScript, the defined mappings, and Google’s Blockly library

 Analyse TD and call corresponding creation block and code functions

 Crawler based on focused crawling technique (only application/td+json)

 Crawler uses asynchronous features of JavaScript to follow links recursively

 Limitations:

 Only HTTP(S) is supported

 Loading and saving of programs is not supported

 Crawler only follows links described with links property keyword

© Fraunhofer IIS11/07/2022

public

Agenda

Page 23

1. Introduction and Motivation

2. From TDs to Blocks and Code

3. Mapping Algorithm

4. Performance Evaluation

5. Conclusion and Future Work

© Fraunhofer IIS11/07/2022

public

Performance Evaluation

Page 24

Evaluation Setup

 Consumer hardware (i7-10610U, 16 GB RAM, Windows 10 21H2)

 Timing determined with performance.now()with millisecond time resolution

 Total acceptable run time should be below 200 ms

© Fraunhofer IIS11/07/2022

public

Evaluation of link following algorithm

 Evaluation of run time with an increasing number

of links to TDs

 Evaluation of 2 TD types:

 With 1 link forming a link chain

 With 2 links forming a link tree

 Discover about 30 Thing Descriptions in 0.1 s

Performance Evaluation

Page 25 © Fraunhofer IIS11/07/2022

public

Performance Evaluation

Page 29

Evaluation of block and code generator

 Theoretical analysis of time complexity resulting in O(n)

 Empirical analysis resulting also in a linear timing behavior

 Generates about 4,000 interaction affordance blocks and code

in 0.1s

© Fraunhofer IIS11/07/2022

public

Performance Evaluation

Page 30

Combined Performance

© Fraunhofer IIS11/07/2022

public

Agenda

Page 31

1. Introduction and Motivation

2. From TDs to Blocks and Code

3. Mapping Algorithm

4. Performance Evaluation

5. Conclusion and Future Work

© Fraunhofer IIS11/07/2022

public

Conclusion and Future Work

Page 32

Conclusion

 Mapping of TD property keywords to block structure definitions and code generator functions

 Implementation of mapping algorithm

 Link following algorithm to discover related and linked TDs

 In 0.2 seconds the algorithm can discover

 25 Thing Descriptions with

 128 interaction affordances

© Fraunhofer IIS11/07/2022

Future Work

 Expand generation algorithm to other protocol bindings

 Investigate the link following concept in Thing Descriptions

Problem I.) All definitions must be implemented by hand, even if a TD is available

Problem II.) Starting from a TD, it is hard to discover related devices

Thank you
for your time
—

Contact
—
Michael Freund

Data Spaces and IoT

michael.freund@iis.fraunhofer.de

Fraunhofer IIS

Nordostpark 84

90411 Nürnberg

www.fraunhofer.de

