
First International Workshop on Semantic Web on Constrained Things

Generating Visual Programming Blocks based on
Semantics in W3C Thing Descriptions
—
Michael Freund, Justus Fries, Thomas Wehr, Andreas Harth

28/05/2023

public

Agenda

Page 2

1. Introduction and Motivation

2. From TDs to Blocks and Code

3. Mapping Algorithm

4. Performance Evaluation

5. Conclusion and Future Work

© Fraunhofer IIS28/05/2023

public

Introduction and Motivation

Page 3

Initial Situation

 Constrained devices are used in industry and consumer applications to sense and act on the environment

 W3C Web of Things:

 Simplify device interaction

 Utilize semantic API descriptions (TD)

 Experts can use WoT Scripting API for text based programming languages

 Everyday users can use graphical tools

© Fraunhofer IIS28/05/2023

public

Introduction and Motivation

Page 4

What is the problem?

 A Block requires:

 a structural definition – describing the layout

 a source code generator function – defining code that is generated

© Fraunhofer IIS28/05/2023

public

Introduction and Motivation

Page 5

What is the problem?

 A Block requires:

 a structural definition – describing the layout

 a source code generator function – defining code that is generated

 In a Wot context: all interaction affordances of a device need a separate block and code definition.

Problem I.) All definitions must be implemented by hand, even if a TD is available

 Limits the number of supported devices in visual programming environments (VPE)

Problem II.) Starting from a TD, it is hard to discover related devices

 Limits the number of devices to interact with

© Fraunhofer IIS28/05/2023

public

Introduction and Motivation

Page 6

Why is it interesting and important?

 TDs are implemented with machine readability in mind

 An algorithm could use the semantic information contained in a TD to generate blocks/code and follow links

 Extends the flexibility of VPEs

 Allows users to interact with arbitrary constrained devices (TD)

 Improves device discoverability

© Fraunhofer IIS28/05/2023

public

Agenda

Page 9

1. Introduction and Motivation

2. From TDs to Blocks and Code

3. Mapping Algorithm

4. Performance Evaluation

5. Conclusion and Future Work

© Fraunhofer IIS28/05/2023

public

From TDs to Blocks and Code

Page 10

Structure of a Thing Description

 RDF document in JSON-LD serialization

 Keywords are mapped to ontology terms via a context (e.g. title -> td:title, op -> hctl:hasOperationType)

© Fraunhofer IIS28/05/2023

Structure of generated Blocks

 TDs consist of mandatory and optional property keywords -> information in generated blocks varies

 Follow abstraction of WoT Scripting API, to simplify the transition to text based programming

 Two Phases:

 To read a property: thing.readProperty('status');

Creation phase:

 TD is consumed

 Thing object is created

Interaction phase:

 Thing object used to call functions

 readProperty, writeProperty,

invokeAction, subscribeEvent

public

From TDs to Blocks and Code

Page 11

Example TD

© Fraunhofer IIS28/05/2023

TD

 Metadata

"@context": "https://www.w3.org/2022/wot/td/v1.1",

"@type": "Thing",

"id": "urn:dev:ops:32473-WoT-Thing-1234",

"title": "LampThing",

"titles": { "en": "LampThing", "de": "LampenDing"},

"description": "A lamp",

"descriptions": { "en": "A lamp", "de": "Eine Lampe"},

"version": "1.0", "created": "2020-10-10T17:00:00Z",

"modified": "2022-10-10T17:00:00Z",

"support": "https://example.org/lamp",

"links": [{

"href": "http://example.com/related-td",

"type": "application/td+json„

}]

"securityDefinitions": {

"basic_sc": {"scheme": "basic", "in": "header"}

},

"security": ["basic_sc"],

public

From TDs to Blocks and Code

Page 12

Example TD

© Fraunhofer IIS28/05/2023

TD

 Metadata

 Properties:

 status (read)

"properties": {

"status": {

"title": "status",

"titles": {"en": "status", "de": "Zustand"},

"description": "Read the status of the lamp",

"descriptions": {

"en": "Read the status of the thing",

"de": "Auslesen des Lampenzustands„

},

"type": "string",

"forms": [...]

}

},

public

From TDs to Blocks and Code

Page 13

Example TD

© Fraunhofer IIS28/05/2023

TD

 Metadata

 Properties:

 status (read)

 Actions:

 toggle

"actions": {

"toggle": {

"title": "toggle",

"titles": {"en": "toggle", "de": "umschalten"},

"description": "Toggle current lamp status",

"descriptions": {

"en": "Toggle current lamp status",

"de": "Umschalten des aktuellen Lampenstatus„

},

"output": {"type": "string"},

"forms": [...],

}

},

public

From TDs to Blocks and Code

Page 14

Example TD

© Fraunhofer IIS28/05/2023

TD

 Metadata

 Properties:

 status (read)

 Actions:

 toggle

 Events:

 overheating

"events": {

"overheating": {

"title": "overheating",

"titles": {"en": "overheating", "de": "Ueberhitzung"},

"description": "An overheating event of the lamp",

"descriptions": {

"en": "An overheating event of the lamp",

"de": "Ein Ueberhitzungs Event der Lampe„

},

"data": {"type": "string"},

"forms": [...],

}

},

public

From TDs to Blocks and Code

Page 15

Mapping of Thing Vocabulary

 Only @context, title, security, and securityDefinitions are mandatory

© Fraunhofer IIS28/05/2023

public

From TDs to Blocks and Code

Page 16

Mapping of Property Affordance Vocabulary

 Properties are available in two types: readProperties and writeProperties

© Fraunhofer IIS28/05/2023

public

From TDs to Blocks and Code

Page 17

Mapping of Action Affordance Vocabulary

 4 different layouts of action blocks (input, output, neither, both)

© Fraunhofer IIS28/05/2023

public

From TDs to Blocks and Code

Page 18

Mapping of Event Affordance Vocabulary

 Event blocks are statement inputs instead of value inputs

 Data type of 'eventVar' defined via data property keyword

© Fraunhofer IIS28/05/2023

public

From TDs to Blocks and Code

Page 19

Link Following Vocabulary

 Link following is a fundamental aspect of the Web to find and explore related Web resources

 Same concept can be used in the Web of Things via the links property keyword

 Only href mandatory

© Fraunhofer IIS11/07/2022

"links": [{

"href": "http://example.com/related-td",

"type": "application/td+json",

"rel": "contolledBy"

}]

public

Agenda

Page 20

1. Introduction and Motivation

2. From TDs to Blocks and Code

3. Mapping Algorithm

4. Performance Evaluation

5. Conclusion and Future Work

© Fraunhofer IIS11/07/2022

public

Mapping Algorithm

Page 22

Implementation of an Algorithm

 PoC implementation using JavaScript, the defined mappings, and Google’s Blockly library

 Analyse TD and call corresponding creation block and code functions

 Crawler based on focused crawling technique (only application/td+json)

 Crawler uses asynchronous features of JavaScript to follow links recursively

 Limitations:

 Only HTTP(S) is supported

 Loading and saving of programs is not supported

 Crawler only follows links described with links property keyword

© Fraunhofer IIS11/07/2022

public

Agenda

Page 23

1. Introduction and Motivation

2. From TDs to Blocks and Code

3. Mapping Algorithm

4. Performance Evaluation

5. Conclusion and Future Work

© Fraunhofer IIS11/07/2022

public

Performance Evaluation

Page 24

Evaluation Setup

 Consumer hardware (i7-10610U, 16 GB RAM, Windows 10 21H2)

 Timing determined with performance.now()with millisecond time resolution

 Total acceptable run time should be below 200 ms

© Fraunhofer IIS11/07/2022

public

Evaluation of link following algorithm

 Evaluation of run time with an increasing number

of links to TDs

 Evaluation of 2 TD types:

 With 1 link forming a link chain

 With 2 links forming a link tree

 Discover about 30 Thing Descriptions in 0.1 s

Performance Evaluation

Page 25 © Fraunhofer IIS11/07/2022

public

Performance Evaluation

Page 29

Evaluation of block and code generator

 Theoretical analysis of time complexity resulting in O(n)

 Empirical analysis resulting also in a linear timing behavior

 Generates about 4,000 interaction affordance blocks and code

in 0.1s

© Fraunhofer IIS11/07/2022

public

Performance Evaluation

Page 30

Combined Performance

© Fraunhofer IIS11/07/2022

public

Agenda

Page 31

1. Introduction and Motivation

2. From TDs to Blocks and Code

3. Mapping Algorithm

4. Performance Evaluation

5. Conclusion and Future Work

© Fraunhofer IIS11/07/2022

public

Conclusion and Future Work

Page 32

Conclusion

 Mapping of TD property keywords to block structure definitions and code generator functions

 Implementation of mapping algorithm

 Link following algorithm to discover related and linked TDs

 In 0.2 seconds the algorithm can discover

 25 Thing Descriptions with

 128 interaction affordances

© Fraunhofer IIS11/07/2022

Future Work

 Expand generation algorithm to other protocol bindings

 Investigate the link following concept in Thing Descriptions

Problem I.) All definitions must be implemented by hand, even if a TD is available

Problem II.) Starting from a TD, it is hard to discover related devices

Thank you
for your time
—

Contact
—
Michael Freund

Data Spaces and IoT

michael.freund@iis.fraunhofer.de

Fraunhofer IIS

Nordostpark 84

90411 Nürnberg

www.fraunhofer.de

