
Bridging the Gap to the Web of Things
On the Conversion between WoT Data Models and the Semantic Definition Format

Jan Romann1

1University of Applied Sciences Emden/Leer, Constantiaplatz 4, 26723 Emden, Germany

Abstract
In this paper, we present our work on the conversion between Web of Things (WoT) data models (Thing
Descriptions and Thing Models) and the Semantic Definition Format (SDF) that aims at providing a bridge
between different data modeling ecosystems for the Internet of Things. We present a comprehensive
mapping of the current 1.1 version of theWoT TD specification to SDF and discuss possible improvements
that could be integrated into the standardization process of both specifications. Our results are illustrated
by a conversion tool written in Python that can be integrated into many (less constrained) devices and
environments, such as gateways or code generation tools, and can also serve as a reference implementation
for other programming languages.

Keywords
Web of Things, Semantic Definition Format, Interoperability

1. Introduction

Semantic descriptions of devices in the Internet of Things (IoT) are an important building
block for enabling both machine-to-machine and human-to-machine interaction: IoT devices
need indications for the proper protocols, data formats, and security mechanisms to use, while
human-readable meta-data is essential for rendering information in user interfaces. As of
today, the IoT faces two kinds of interoperability problems related to semantic descriptions: (a)
incompatible data models and interaction patterns at the device or instance level, and (b) the
lack of a common data and interaction model at the ecosystem level, which makes it difficult to
universally describe classes of devices.
There are two open standards that promise solutions for these problems: On the one hand,

the W3C Web of Things (WoT) and its Thing Description (TD) [1] try to adapt principles from
the World Wide Web (WWW) to the IoT. The TD, a JSON-LD [2] document with a specialized
vocabulary, serves as the fundamental building block of the WoT architecture and is supposed
to be the entry point of a Thing, making it easier for its peers and other consumers to interact
with it. A different approach is pursued by the One Data Model liaison organization (OneDM)
together with the Internet Engineering Task Force (IETF): The so-called Semantic Definition
Format (SDF) [3] strives to be a universal format for converting data models between different

SWoCoT 2023: First International Workshop on Semantic Web on Constrained Things at ESWC 2023, May 28, 2023,
Hersonissos, Crete, Greece
Envelope-Open jan.romann@hs-emden-leer.de (J. Romann)
Orcid 0000-0002-9021-3821 (J. Romann)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:jan.romann@hs-emden-leer.de
https://orcid.org/0000-0002-9021-3821
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


ecosystems, with the goal of being an intermediary between them and thus solving the second
aspect of the interoperability problem.
While bearing structural similarities—both approaches use properties, actions, and events

to describe the interaction affordances of a Thing, and borrow vocabulary from JSON Schema
[4]—there are also important differences between the two specifications, such as the reliance on
plain JSON (and not JSON-LD) in the case of SDF models and thus a fundamentally different
approach to semantically describing IoT devices. At the same time, new features such as the
recently introduced WoT Thing Model (TM)—which also serves the purpose of providing a
reusable format for device classes—indicate a convergence of the two specifications to a certain
extent. Both specifications also have different philosophies when it comes to describing a
taxonomy of devices or individual device components: where WoT relies on a linking approach
between TDs or TMs, SDF also allows for the creation of nested components within a single
model.

In the past, structural differences like these have prevented a full conversion between the two
formats. Moreover, there is not yet a formal specification of how to mapWoT data models to SDF
and vice versa. Since both formats are dealing with two important sides of the interoperability
problem in the IoT, there is a strong motivation to develop (1) a mapping between WoT data
models and SDF, and (2) corresponding conversion tools. As SDF strives to be a universal format
for converting between different information models, creating such a tool set would potentially
pave the way for the integration of any ecosystem supported by SDF into the Web of Things.
In this paper, we present the results we have obtained in our approach for a systematic

conversion between WoT data models and SDF. This includes a flexible converter written in
Python, which is usable both as a library, a command line tool, and a simple web application.
Based on our results, we discuss the current limitations of the two specifications as well as
possible improvements. Furthermore, to explore the potential of a combination of the two
formats for bridging the gap between constrained environments and their corresponding
ecosystems—where device capabilities might only be described by a class identifier, as is the
case for IPSO Smart Objects—, and the Web of Things, where TDs are the common way of
describing a Thing. Lastly, we will discuss if WoT and SDF in general, and our mapping approach
in particular can bridge the gap between the Web of Things and constrained devices or if a
fundamentally different approach is required to achieve this goal.
The rest of this paper is structured as follows: After introducing relevant foundations in

section 2 and defining the requirements for our endeavor in section 3, we will present our work
on mappings between the two formats in section 4 and outlining its design and implementation
in section 5. Lastly, in section 6, we will draw a conclusion and discuss possible limitations and
future work.

2. Foundations

In this section, we will give a brief overview of normative documents (subsection 2.1) and other
literature (subsection 2.2) relevant to this paper.



2.1. Relevant Specifications and Standards

While both WoT and SDF have developed into families of specifications, the two approaches
are in different stages of development: The Web of Things Architecture [5] and the Thing
Description [6] specification have both reached the status of W3C Recommendations, with
updated 1.1 versions of both Web Standards [1, 7] and additional specifications for Discovery [8]
and a Profile [9] mechanism on the way. The specification body also defines a mechanism [10]
for binding interaction affordances to resources accessible via application-layer protocols, such
as HTTP [11] or CoAP [12]. However, this binding mechanism is currently still underdeveloped
and will be fleshed out during the Working Group’s next charter period.
The updated TD specification also introduces the new concept of Thing Models (TMs),

which share most of their vocabulary with TDs, but are less constrained when it comes to
mandatory fields while providing additional mechanisms for referencing and extending existing
(external) definitions. These features make them compatible with SDF and designate them as
intermediaries between TDs and SDF models, which we will see later in more detail.

SDF on the other hand has not reached the status of an RFC yet at the time of writing but is
about to be finished by its IETF working group. Besides the SDF core specifications, there are a
number of additional drafts being worked on that are dealing with extensions to SDF, e.g., by
adding support for modeling complex relations [13], or for so-called mapping files [14] that can
be used for augmenting an SDF model and are very important for this paper.
Examples of a TD (Listing 1) and a corresponding TM, (Listing 2) as well as an SDF model

(Listing 3) and an SDF mapping file (Listing 4) can be found in the appendix. These examples
also illustrate our conversion process for simple, i.e. non-nested data models.

2.2. Related Work

There are a number of pre-existing projects which also deal with the conversion between SDF
and other formats. The one most closely related to this paper is a converter by Roman Kravtsov1

written in JavaScript (for the Node.js ecosystem), which is able to convert SDF models to WoT
Thing Models. Kravtsov dealt with the conversion between the two formats in the context of
his master’s thesis [15], comparing, besides SDF, multiple formats for semantic descriptions
of IoT devices with the newly added Thing Model feature. Besides his SDF converter, he also
provides implementations for Oracle Device Models2, Eclipse Vorto models3, and Microsoft’s
Digital Twin Definition Language (DTDL)4.
While working in general, Kravtsov’s converter between SDF and WoT has a number of

limitations: It does not support the backward conversion of WoT documents to SDF, can only
convert SDF models to TM (there is no support for TD), and only accepts a single sdfObject
within a model as an input. This also means that Kravtsov’s converter does not support
roundtripping, i.e., translating a conversion result back into its original format. Furthermore,
there is no validation of both inputs and outputs, while the actual mapping of SDF affordances is

1https://github.com/roman-kravtsov/sdf-object-converter (retrieved: May 10, 2023).
2https://github.com/roman-kravtsov/oracle-device-model-converter (retrieved: May 10, 2023).
3https://github.com/roman-kravtsov/vorto-model-converter (retrieved: May 10, 2023).
4https://github.com/roman-kravtsov/digital-twins-converter (retrieved: May 10, 2023).

https://github.com/roman-kravtsov/sdf-object-converter
https://github.com/roman-kravtsov/oracle-device-model-converter
https://github.com/roman-kravtsov/vorto-model-converter
https://github.com/roman-kravtsov/digital-twins-converter


a simple copy operation, potentially resulting in WoT TMs containing definitions only specified
for SDF. Besides these limitations for the actual conversion, the converter has a number of
usability issues, neither providing a library API nor a command line interface that allows for
specifying input and output file names.

Another relevant SDF converter5 covers the conversion between SDF and the data modelling
language YANG (Yet Another Next Generation, [16]). Written by Jana Kiesewalter in C++, her
converter can be used as a standalone command line application, which also allows integration
into web applications.6 Her converter resembles a more sophisticated approach to SDF conver-
sion than Kravtsov’s, also supporting bidirectional conversion and roundtripping. Kiesewalter’s
converter, which is part of her Master’s thesis [17], also features a comprehensive mapping
between the two data modeling approaches, which she also codified in an Internet-Draft [18].
However, there are a number of small issues with the converter which are related to the flexible
nature of the JSON Schema-inspired vocabulary and the implementation of its validation, the
latter of which has a negative impact on the converter’s performance since the JSON Schema
document currently needs to be read in from the file system for every validation process.
Furthermore, there are two converters by Ericsson Research: The first one7 allows the

conversion between SDF and IPSO data models, which is the data modeling approach of OMA
SpecWorks. The second converter8 also allows for a conversion between SDF and DTDL, which
is used for the company’s Azure Digital Twins models and is, like WoT TD, based on JSON-
LD. Finally, OCF provides tools9 to convert between SDF and OpenAPI, a popular format for
describing web APIs.
Through a growing number of converter implementations, we can observe an integration

between different ecosystems and data modeling approaches fostered by SDF as a common
description framework. However, both comprehensive support for a conversion of the WoT
document formats and the inclusion of instance-specific information had been underdeveloped
so far.

3. Requirements

In this section, we will describe the requirements we defined both for our mappings between
WoT and SDF, and our converter implementation.

Our most important requirement was to provide a comprehensive mapping between SDF and
WoT TD. That means that our converter should be able to translate every field that is contained
in an SDF model or a WoT definition into an equivalent definition in the other format. This
should also include definitions that are either not defined in one of the two specifications or
originate from vocabulary extensions. In the case of SDF, these additional definitions should be
included in mapping files.

5https://github.com/jkiesewalter/sdf-yang-converter (retrieved: May 10, 2023).
6See http://sdf-yang-converter.org/ (retrieved: May 10, 2023).
7https://github.com/EricssonResearch/ipso-odm (retrieved: May 10, 2023).
8Although the converter is accessible through a web interface hosted by Ericsson http://wishi.nomadiclab.com/
sdf-converter/ (retrieved: May 10, 2023), alongside a number of other SDF converters, its source code and/or project
description seems unavailable to the public at the moment.

9https://github.com/openconnectivityfoundation/SDFtooling (retrieved: May 10, 2023).

https://github.com/jkiesewalter/sdf-yang-converter
http://sdf-yang-converter.org/
https://github.com/EricssonResearch/ipso-odm
http://wishi.nomadiclab.com/sdf-converter/
http://wishi.nomadiclab.com/sdf-converter/
https://github.com/openconnectivityfoundation/SDFtooling


An important criterion for evaluating both the comprehensiveness and the accuracy of a
mapping is the ability to roundtrip the conversion process, i.e., to convert a document from
either of the two specifications into the other one and receive the same document when applying
a conversion in the other direction. The roundtrip potential should therefore be considered both
during the development of the mappings themselves and as additional test cases for the actual
converter implementation, ensuring that as many mappings as possible are reversible. Besides
the conversions between SDF and WoT, the converter should also support the conversion of
WoT TMs into WoT TDs, and vice versa. This way, users are able to first create reusable WoT
documents from SDF models, which they can then instantiate on demand. Conversely, they can
create generalizations in the form of TMs from TDs, although the resulting TMs will contain
instance-specific information that might have to be removed manually by the user after the
conversion process.

Both specifications have mechanisms for referencing and (in the case of WoT TMs) extending
models, which should also be able to be resolved in order to create consolidated documents before
conversion, as documents conforming to the other specification cannot be directly referenced.
However, this might be at odds with the roundtripping mentioned above, as resolved references
cannot be converted back into a reference without making explicit which definitions originated
from another document. Moreover, the converter should be able to validate both conversion
inputs and outputs on the basis of the pre-defined schemas (using either CDDL [19] or JSON
Schema [20]) that are included in both specifications.

Our second most important requirement was that the converter should be usable in as many
deployment scenarios as possible. Similar to Kiesewalter’s converter, our implementation should
be usable both as a CLI tool and as a web application. The CLI tool should enable users to both
call the converter from a terminal and integrate it in scripts, while the web application should
offer a simple interface for converting between SDF and WoT. However, the converter should
also expose its conversion logic as a library for the ecosystem/programming language of our
choice, making it possible to reuse it in other implementations of the same or a neighboring
ecosystem, such as code generators.

Moreover, the converter as a whole should work in a wide variety of environments, supporting
as many operating systems (e.g., Linux, macOS, and Windows) and types of devices as possible.
This should include single-board computers like Raspberry Pis, but not necessarily constrained
devices, as JSON—the serialization format of both SDF and WoT—is not very well suited for
constrained environments.
Lastly, the converter should provide a high degree of usability and should be easy to install

and add to third-party projects, e.g., by being included in a package repository associated with
the programming language/ecosystem chosen.

4. Mappings between SDF and WoT

In this section, we will briefly outline our mapping between the WoT data and interaction
models on the one hand and SDF on the other hand. A high-level view of our mapping process
can be seen in Figure 1.

At the center of our mapping between WoT and SDF are WoT Thing Models, which proved to



Figure 1: High-level view on the conversion process for WoT TMs, WoT TDs, and SDF models and
mapping files.

be versatile enough to become an intermediary between the instance-specific Thing Descriptions
and the abstract SDF models, the latter of which might also be accompanied (and potentially
augmented) by additional mapping files providing instance- or ecosystem-specific information.
Overviews of our mappings of the most important keywords from both specifications can be
seen in Table 1 (mapping from SDF to WoT) and Table 2 (mapping from WoT to SDF).

The central role of Thing Models in our mapping process arises from their ability to, similar
to SDF models, describe interaction affordances in a protocol-agnostic way. In contrast to TDs,
they do not need to include protocol bindings (in hypermedia forms) and can also omit the
otherwise mandatory security definitions. Furthermore, they can also reproduce and preserve
SDF’s import mechanism (which uses the sdfRef keyword) when it comes to same-document
references.
However, it is therefore not only the abstract nature of WoT Thing Models that makes it

possible to convert SDF models almost directly to them but also the similarities of both formats’
vocabulary: For instance, an SDF field like sdfOutputData becomes output when converted to
WoT, while also allowing for simply copying over many of the vocabulary terms inspired by
JSON Schema. However, since not all SDF vocabulary terms have a (direct) WoT equivalent, we
have to differentiate two cases if direct mapping is not possible.
In the first case, we can map the field to a helper field defined in addition to the regular

WoT vocabulary. One example of this approach is the copyright field from the SDF info block,
which does not have a direct equivalent in the WoT information model. Therefore, we introduce
a prefixed field named sdf:copyright, which can be used to integrate copyright information
into a WoT data model and enable roundtripping, since unmapped information would otherwise
be lost when reversing the conversion process. It is noticeable, though, that the info block in
SDF is describing the whole model and therefore all of its components, i.e. every sdfObject and
sdfThing. Since every sdfObject and sdfThing becomes its own TD or TM, this information



Table 1
Overview of mappings of the most important SDF keywords to WoT.

SDF Keyword WoT Class/Keyword

sdfThing TM with tm:submodel links
sdfObject TM without tm:submodel links
sdfProperty PropertyAffordance
writable readOnly (negated)
readable writeOnly (negated)

sdfAction ActionAffordance
sdfOutputData output
sdfInputData input

sdfEvent EventAffordance
sdfOutputData output

sdfData schemaDefinitions (at the TM level)
sdfRef tm:ref
sdfChoice Enum of JSON objects with sdf:choiceName
sdfRequired tm:optional (by including all non-required interaction affor-

dance keys)
namespaces @context
defaultNamespace sdf:defaultNamespace
info Multiple targets:
version model field in Version class
title sdf:title
copyright sdf:copyright
license If URL: link with relation-type license

Else: sdf:license

needs to be included in every resulting JSON-LD document in order to prevent information loss.
In the second case, we can map SDF definitions without a direct counterpart to a semantically

equivalent construction in WoT. One example of this approach is the license field from the SDF
information block, given that its value is a URL pointing to a license text. In this case, the license
is included as an entry in the links field, specifying a license link relation type. However,
if the license is not a URL, the first strategy (using an sdf:license field) needs to be applied.
Another example for this second case is the mapping of sdfChoice, an enumeration where
data schemas are associated with a name. Since WoT only has enums as a semantically similar
construct, we currently use them as a conversion target, adding an additional sdf:choiceName
member to each enum entry to enable roundtripping. We decided to use this approach since
WoT is currently missing an equivalent to sdfChoice, which is semantically similar to JSON
Schema’s anyOf. However, anyOf is currently not part of the vocabulary WoT borrows from
JSON Schema, but is considered for the next major version of the TD specification. This is one
example where the alignment of SDF and WoT is not yet complete, and where the WoT data
models need to become more expressive to fully cover SDF’s semantics.

After a ThingModel has been created from SDF inputs, whichmight include mapping files that
add missing information needed by TDs, it can be transformed into a Thing Description using a
well-defined algorithm from the WoT TD specification [1, section 9.4]. In the other direction,



Table 2
Overview of mappings of the most important WoT classes and keywords [1, section 5] to SDF.

WoT Class/Keyword SDF Keyword

Thing sdfThing (TM has tm:submodel links), sdfObject
title label
description description
schemaDefinitions sdfData
@context namespaces of the SDF model (with exceptions)

DataSchema dataqualities
readOnly Mapping file
writeOnly Mapping file

InteractionAffordancea —
title label
description description

PropertyAffordance sdfProperty
readOnly writable (negated)
writeOnly readable (negated)
observable observable

ActionAffordance sdfAction
input sdfInputData
output sdfOutputData

EventAffordance sdfEvent
tm:ref sdfRef
tm:optional sdfRequired (by including all non-optional interaction affor-

dance keys)
Link Mapping file, except for special link types (e.g., license,

tm:extends, tm:submodel)
a This is the base class of the three affordance types.

using TDs as an input, TMs can be seen as near supersets of TDs, making it possible to convert
a single TD with little changes into a TM since—in contrast to SDF models—they are capable of
also containing instance-specific information such as protocol bindings. When converting a
Thing Model containing instance-specific information to SDF, the unmappable fields are put
into an SDF mapping file, which is another JSON document where the keys of the conversion
targets represent JSON Pointers [21] (such as #/sdfObject/bar/sdfProperty/bar/security)
that reference the place within the corresponding SDF model that is supposed to be augmented
by the mapping file definition. This approach also enables roundtripping in the other direction,
making it possible to store information such as the original JSON-LD @context that cannot be
recreated from SDF’s namespace concept alone.

A crucial difference between SDF and WoT that became apparent during the development of
the mappings is how the two specifications approach hierarchical or nested models that describe
complex devices (such as a combination of a freezer and a refrigerator in a single apparatus
that is capable of controlling both of its components). SDF allows for expressing hierarchical
relationships via its sdfThing class which itself can contain an arbitrary number of sdfThings
and sdfObjects, the latter of which can be seen as “leaf nodes” within an SDF model. WoT on



the other hand strongly prefers the use of web links that point to subordinate TMs or TDs for
describing hierarchical relationships between Things (using either the tm:submodel or item
link relation type). In the process of creating our mappings, we identified needs for alignment
in both specifications, which led to an adjustment of the role sdfThings play within an SDF
model.10 We also saw the need to specify a concept in WoT that allows for containing multiple
TMs or TDs in a single document, as, otherwise, it becomes very difficult to work with nested
conversion results due to the need to point to submodels or subthings via a URI. In our mapping,
we introduced a workaround called TD/TM Collections, which are JSON objects where each
value represents a TD or TM, while link URIs pointing to subthings or submodels within the
same Collection are JSON Pointers (see Listing 5 for a TM Collection example). This approach
showed potential for achieving a full mapping between hierarchical SDF and WoT data models,
enabling the conversion of nested relationships between the two formats (see Listing 6 for an
SDF model created from the TM collection). However, we also experienced some difficulties
when covering edge cases, such as TM/TD Collections that contain TMs or TDs that point to
documents outside the Collection, which could potentially lead to naming conflicts within the
TM/TD Collection during the reference resolution. Therefore, we arrived at the conclusion that
there is still more specification work needed to be able to reliably describe complex devices via
a single WoT document and to enable the conversion of nested descriptions from and to other
formats.

5. Converter Design and Implementation

We designed our converter to be as flexible as possible and usable in a wide variety of deployment
scenarios. Therefore, we located the core conversion logic into a reusable library component,
which we built upon to create both a command-line interface (CLI) and a web application.

Due to the fact that we could use Thing Models as a mediator during the conversion process,
the core logic only needed to cover the conversion between TDs and TMs on one hand, and
between TMs and SDF on the other. The conversion between TDs and SDF models could then
be derived by chaining the two existing types of conversion. In total, our library component
exposes six functions (named, e.g., convert_sdf_to_wot_td or convert_wot_td_to_wot_tm)
as its external API, offering a number of additional parameters to be included to enable additional
features or, e.g., pass additional augmenting files alongside an SDF model or a TM. The available
parameters for the six exposed functions are also illustrated by the CLI API, which can be seen
in Table 3.

Our third component, a web application, is designed to demonstrate the converter’s capabili-
ties in an easily accessible manner and encourage experimentation by offering a basic graphical
user interface (GUI) as well as a simple REST API. A screenshot illustrating the web application’s
composition and functionality can be seen in Figure 2. Users are able to insert models that are
supposed to be converted in one of the two text areas and then select the appropriate source

10In an earlier version of SDF, sdfThings were not allowed to contain interaction affordances as sdfObjects can.
This made it very difficult to map a Thing Description or Model that both contains an interaction affordance and a
link to a subthing or submodel to SDF. However, in recent versions of the SDF specification, this problem has been
addressed and is no longer present.



Table 3
Overview of the available parameters for the sub-commands of our CLI.

Parameter Arguments Sub-Commands Default

--input, -i* File path(s) or URL(s)a all —
--output, -o File path all —
--suppress-roundtripping — all False
--indent Natural number all 4
--origin-url URL sdf-to-tm, sdf-to-td —
--mapping-files Zero or more file paths sdf-to-tm, sdf-to-td —
--title String sdf-to-tm, sdf-to-td —
--version String sdf-to-tm, sdf-to-td —
--copyright String sdf-to-tm, sdf-to-td —
--license String sdf-to-tm, sdf-to-td —
--meta-data File path or URL tm-to-sdf, tm-to-td —
--bindings File path or URL tm-to-sdf, tm-to-td —
--placeholder-map File path or URL tm-to-sdf, tm-to-td —
--mapping-file-output File path tm-to-sdf, td-to-sdf —
--remove-not-required-
affordances

— tm-to-td False

* Mandatory Parameter.
a Can be multiple paths/URLs when converting from WoT TM/TD – the imported TMs/TDs are then treated
as Collections.

and target formats via a dropdown menu. Helper functionality (e.g., clearing or formatting the
inputs) and options can be enabled at the bottom of the GUI.
The actual implementation was done in Python, which offered not only a rich package

ecosystem we could build upon, especially for handling command line arguments (via the
argparse module included in the standard library) and for building our web application (using
the framework Flask); we were also able to reuse libraries for handling and applying JSON
Schema [4], JSON Pointers [21], and the JSON Merge Patch algorithm [22], making it possible to
perform input and output validation as well as resolving the different reference and extension
mechanisms WoT and SDF define.

The converter library and CLI tool can be installed as a bundle via the Python package repos-
itory PyPI11, while their source code is publicly available on GitHub12. After the installation,
users can either use the converter CLI from a terminal of their choice (by using the command
sdf-wot-converter) or depend on the library in their own Python project.
The web application is continuously running on a web server reachable under https:

//sdfwotconverter.pythonanywhere.com/ (retrieved: May 10, 2023). Its source code is also
publicly available on GitHub13 and can be used to run the web application locally. As mentioned
in section 2.2, our converter implementation is also featured in a collection of SDF conversion

11https://pypi.org/project/sdf-wot-converter/ (retrieved: May 10, 2023).
12https://github.com/JKRhb/sdf-wot-converter-py (retrieved: May 10, 2023).
13https://github.com/JKRhb/sdf-wot-converter-py-demo (retrieved: May 10, 2023).

https://sdfwotconverter.pythonanywhere.com/
https://sdfwotconverter.pythonanywhere.com/
https://pypi.org/project/sdf-wot-converter/
https://github.com/JKRhb/sdf-wot-converter-py
https://github.com/JKRhb/sdf-wot-converter-py-demo


Figure 2: Screenshot of our converter’s web interface.

tools14 that illustrates how SDF models can be translated into different target formats, allowing
for a direct comparison via a web interface.

6. Conclusion and Future Work

In this paper, we dealt with the conversion between the Semantic Definition Format [3] and
the Web of Things Thing Description (WoT TD) [1]—two specifications that aim at improving
the interoperability in the Internet of Things in terms of data models and device interactions,
respectively. On the basis of a detailed mapping between the data models of both specifications,
we developed a converter written in Python which can be used as a library and a command
line interface (CLI). Building upon our library, we also created a web application, which not
only allows for easy access to the converter’s logic via a graphical user interface but also via a
simple REST API.
Corresponding with our mappings, our converter supports both WoT TDs and TMs (Thing

Models), the latter being a new addition that allows for describing not only instances, but also
classes of devices, enabling the re-use of definitions via import and extension features. For our
mappings, we discovered that TMs can act as an intermediary for the conversion between SDF
and Thing Descriptions, allowing us to only define two types of mappings (TM and SDF on the
one hand and TM and TD on the other) in order to cover all three data formats. Besides SDF
models, we use the newly defined concept of SDF mapping files [14], allowing us to consider
instance- and ecosystem-specific information during the conversion process. This aspect closes

14http://wishi.nomadiclab.com/sdf-converter/ (retrieved: May 10, 2023).

http://wishi.nomadiclab.com/sdf-converter/


an important gap between the two specifications, making it possible to convert from SDF to
WoT Thing Descriptions, provided that a mapping file is present that contains the necessary
mandatory protocol bindings and security definitions.
In a real-world deployment, however, the requirement of such a mapping file may become

a problem: For example, an intermediary that is performing conversions from an ecosystem-
specific format to WoT TD, using SDF as a translation medium, needs to somehow provide the
instance-specific information that is required to create a valid TD. This information must either
be derived from the input format or from the context of the conversion (e.g., by using the Thing’s
IP address to fill the TD’s base field). However, this indicates that SDF is not yet as universal as
it needs to be to fully bridge the gap between WoT and other information models, since the
accompanying mapping files still include ecosystem-specific terms most of the time which are
not necessarily compatible with each other. Therefore, more research and specification work is
required to further develop the concept of mapping files and to make SDF truly viable for data
models that go beyond abstract descriptions of device classes.
In WoT, we identified the need for being able to include multiple TMs or TDs in a single

document in order to be able to work with nested data structures, as SDF allows for describing a
hierarchy of Things in a single model, while the WoT TD specification does not, as the preferred
way for creating a hierarchy is by linking between documents. By introducing an experimental
concept called TM/TD Collections, we have been able to recreate a nested structure using JSON
Pointers [21] with same-document references. These new concepts also enabled us to support
roundtripping—i.e., the reproduction of original inputs from a conversion result—in most cases,
with references to external documents (which we also resolve before the conversion) being the
greatest exception in this regard.
While we have been able to close a number of gaps between the two specifications and

were able to make a few contributions along this way, there is still room for improvement. In
particular, there are parts of the WoT vocabulary which we currently need to map to a mapping
file that could potentially also be converted to SDF model vocabulary. The most prominent
example for this at the moment is probably the addition of SDF relations [13], which could be
used for mapping generic WoT links to SDF. Other additions could involve security definitions
or more concrete protocol-specific vocabulary. Furthermore, we noticed that the concept of
SDF namespaces could be refined in order to make the relationship to JSON-LD features used
in WoT TD clearer. Therefore, the proposed mappings in this paper are still only a starting
point for a comprehensive alignment of the two specifications and should also be codified in a
specification or standard as soon as both WoT TD is published as version 1.1 and SDF reaches
RFC status.

Future work also needs to better evaluate and compare this and future implementations based
on quantitative and qualitative criteria. Moreover, a better grounding of our research in the
theoretical literature is required to provide not only a better foundation for the mapping between
the two formats but also for enabling a more sophisticated approach to the implementation of
these mappings.

Lastly, for future versions of our converter, we consider choosing a compiled, statically typed
language like Rust for the implementation instead, potentially improving its performance and
making it more robust, while also making it possible to use the converter in environments
where a Python interpreter is not available. This would potentially also contribute to further



bridging the gap between constrained environments and the Web of Things.

Acknowledgments

This research has been partially funded by the German Bundesministerium für Wirtschaft
und Klimaschutz (BMWK), Förderkennzeichen 01MC22008C. We would like to thank Carsten
Bormann and Olaf Bergmann for their valuable input and continuous advice, and also thank
the reviewers of the SWoCoT 2023 Workshop for their very helpful and constructive feedback.

References

[1] S. Käbisch, T. Kamiya, M. McCool, V. Charpenay, Web of Things (WoT) Thing Description
1.1, W3C Candidate Recommendation Snapshot, W3C, 2023. URL: https://www.w3.org/
TR/2023/CR-wot-thing-description11-20230119/.

[2] D. Longley, P.-A. Champin, G. Kellogg, JSON-LD 1.1, W3C Recommendation, W3C, 2020.
URL: https://www.w3.org/TR/json-ld11/.

[3] M. Koster, C. Bormann, Semantic Definition Format (SDF) for Data and Interactions of
Things, Internet-Draft draft-ietf-asdf-sdf-13, IETF, 2023. URL: https://datatracker.ietf.org/
doc/html/draft-ietf-asdf-sdf-13, Work in Progress.

[4] A. Wright, H. Andrews, B. Hutton, JSON Schema Validation: A Vocabulary for Structural
Validation of JSON, Internet-Draft draft-bhutton-json-schema-validation-01, IETF, 2020.
URL: https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-validation-01,Work
in Progress.

[5] M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi, K. Toumura, K. Kajimoto, Web of
Things (WoT) Architecture, W3C Recommendation, W3C, 2020. URL: https://www.w3.
org/TR/2020/REC-wot-architecture-20200409/.

[6] S. Käbisch, T. Kamiya, M. McCool, V. Charpenay, M. Kovatsch, Web of Things (WoT)
Thing Description, W3C Recommendation, W3C, 2020. URL: https://www.w3.org/TR/
2020/REC-wot-thing-description-20200409/.

[7] M. Lagally, R. Matsukura, M. McCool, K. Toumura, Web of Things (WoT) Architecture 1.1,
W3C Candidate Recommendation Snapshot, W3C, 2023. URL: https://www.w3.org/TR/
2023/CR-wot-architecture11-20230119/.

[8] A. Cimmino, M. McCool, F. Tavakolizadeh, K. Toumura, Web of Things (WoT) Discovery,
W3C Candidate Recommendation Snapshot, W3C, 2023. URL: https://www.w3.org/TR/
2023/CR-wot-discovery-20230119/.

[9] M. Lagally, B. Francis, M. McCool, R. Matsukura, S. Käbisch, T. Mizushima, Web of
Things (WoT) Profile, W3CWorking Draft, W3C, 2023. URL: https://www.w3.org/TR/2023/
WD-wot-profile-20230118/.

[10] M. Koster, E. Korkan, Web of Things (WoT) Binding Templates, W3C Working Group Note,
W3C, 2020. URL: https://www.w3.org/TR/2020/NOTE-wot-binding-templates-20200130/.

[11] R. T. Fielding, M. Nottingham, J. Reschke, HTTP Semantics, Technical Report 9110, IETF,
2022. doi:10.17487/RFC9110.

https://www.w3.org/TR/2023/CR-wot-thing-description11-20230119/
https://www.w3.org/TR/2023/CR-wot-thing-description11-20230119/
https://www.w3.org/TR/json-ld11/
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-13
https://datatracker.ietf.org/doc/html/draft-ietf-asdf-sdf-13
https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-validation-01
https://www.w3.org/TR/2020/REC-wot-architecture-20200409/
https://www.w3.org/TR/2020/REC-wot-architecture-20200409/
https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/
https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/
https://www.w3.org/TR/2023/CR-wot-architecture11-20230119/
https://www.w3.org/TR/2023/CR-wot-architecture11-20230119/
https://www.w3.org/TR/2023/CR-wot-discovery-20230119/
https://www.w3.org/TR/2023/CR-wot-discovery-20230119/
https://www.w3.org/TR/2023/WD-wot-profile-20230118/
https://www.w3.org/TR/2023/WD-wot-profile-20230118/
https://www.w3.org/TR/2020/NOTE-wot-binding-templates-20200130/
http://dx.doi.org/10.17487/RFC9110


[12] Z. Shelby, K. Hartke, C. Bormann, The Constrained Application Protocol (CoAP), RFC
7252, IETF, 2014. doi:10.17487/RFC7252.

[13] P. Laari, Extended Relation Information for Semantic Definition Format (SDF), Internet-
Draft draft-laari-asdf-relations-01, IETF, 2022. URL: https://datatracker.ietf.org/doc/html/
draft-laari-asdf-relations-01, Work in Progress.

[14] C. Bormann, J. Romann, Semantic Definition Format (SDF): Mapping files, Internet-Draft
draft-bormann-asdf-sdf-mapping-02, IETF, 2023. URL: https://datatracker.ietf.org/doc/
html/draft-bormann-asdf-sdf-mapping-02, Work in Progress.

[15] R. Kravtsov, Thing Model for the Web of Things, Master’s thesis, University of Passau,
2021. Unpublished.

[16] M. Bjorklund, The YANG 1.1 Data Modeling Language, RFC 7950, IETF, 2016. doi:10.
17487/RFC7950.

[17] J. Kiesewalter, Design and Implementation of an SDF/YANG Converter in the Context of
Standardization, Master’s thesis, University of Bremen, 2021. Unpublished.

[18] J. Kiesewalter, C. Bormann, Mapping between YANG and SDF, Internet-Draft draft-
kiesewalter-asdf-yang-sdf-01, IETF, 2021. URL: https://datatracker.ietf.org/doc/html/
draft-kiesewalter-asdf-yang-sdf-01, Work in Progress.

[19] H. Birkholz, C. Vigano, C. Bormann, Concise Data Definition Language (CDDL): A Nota-
tional Convention to Express Concise Binary Object Representation (CBOR) and JSON
Data Structures, RFC 8610, IETF, 2019. doi:10.17487/RFC8610.

[20] A. Wright, H. Andrews, G. Luff, JSON Schema Validation: A Vocabulary for Structural Vali-
dation of JSON, Internet-Draft draft-handrews-json-schema-validation-01, IETF, 2018. URL:
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-01, Work in
Progress.

[21] P. C. Bryan, K. Zyp, M. Nottingham, JavaScript Object Notation (JSON) Pointer, RFC 6901,
IETF, 2013. doi:10.17487/RFC6901.

[22] P. E. Hoffman, J. M. Snell, JSONMerge Patch, RFC 7396, IETF, 2014. doi:10.17487/RFC7396.

http://dx.doi.org/10.17487/RFC7252
https://datatracker.ietf.org/doc/html/draft-laari-asdf-relations-01
https://datatracker.ietf.org/doc/html/draft-laari-asdf-relations-01
https://datatracker.ietf.org/doc/html/draft-bormann-asdf-sdf-mapping-02
https://datatracker.ietf.org/doc/html/draft-bormann-asdf-sdf-mapping-02
http://dx.doi.org/10.17487/RFC7950
http://dx.doi.org/10.17487/RFC7950
https://datatracker.ietf.org/doc/html/draft-kiesewalter-asdf-yang-sdf-01
https://datatracker.ietf.org/doc/html/draft-kiesewalter-asdf-yang-sdf-01
http://dx.doi.org/10.17487/RFC8610
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-01
http://dx.doi.org/10.17487/RFC6901
http://dx.doi.org/10.17487/RFC7396


A. Appendix

{
"@context": "https://www.w3.org/2022/wot/td/v1.1",
"id": "urn:uuid:0804d572-cce8-422a-bb7c-4412fcd56f06",
"title": "MyLampThing",
"securityDefinitions": {

"basic_sc": {"scheme": "basic", "in": "header"}
},
"security": "basic_sc",
"properties": {

"status": {
"type": "string",
"forms": [{"href": "https://mylamp.example.com/status"}]

}
},
"actions": {

"toggle": {
"forms": [{"href": "https://mylamp.example.com/toggle"}]

}
},
"events": {

"overheating": {
"data": {"type": "string"},
"forms": [{

"href": "https://mylamp.example.com/oh",
"subprotocol": "longpoll"

}]
}

}
}

Listing 1: Example WoT Thing Description [taken from 1, Example 1].



{
"@context": "https://www.w3.org/2022/wot/td/v1.1",
"@type": "tm:ThingModel",
"id": "urn:uuid:0804d572-cce8-422a-bb7c-4412fcd56f06",
"title": "MyLampThing",
"securityDefinitions": {
"basic_sc": {"scheme": "basic", "in": "header"}

},
"security": "basic_sc",
"properties": {
"status": {
"type": "string",
"forms": [{"href": "https://mylamp.example.com/status"}]

}
},
"actions": {
"toggle": {
"forms": [{"href": "https://mylamp.example.com/toggle"}]}

},
"events": {
"overheating": {
"data": {"type": "string"},
"forms": [{

"href": "https://mylamp.example.com/oh",
"subprotocol": "longpoll"

}]
}

}
}

Listing 2: Example WoT TM, created from the TD in Listing 1. Note that, in contrast to the TD,
the top-level title, securityDefinitions and security fields as well as the affordance-level
forms could also be omitted here without making the TM invalid.



{
"sdfObject": {
"sdfObject0": {
"label": "MyLampThing",
"sdfProperty": {
"status": {
"observable": false,
"type": "string"

}
},
"sdfAction": {
"toggle": {}

},
"sdfEvent": {
"overheating": {
"sdfOutputData": {
"type": "string"

}
}

}
}

}
}

Listing 3: Example SDF model, based on the Thing Model from Listing 2.



{
"map": {
"#/sdfObject/sdfObject0/sdfProperty/status": {
"forms": [
{
"href": "https://mylamp.example.com/status"

}
]

},
"#/sdfObject/sdfObject0/sdfAction/toggle": {
"forms": [
{
"href": "https://mylamp.example.com/toggle"

}
]

},
"#/sdfObject/sdfObject0/sdfEvent/overheating": {
"forms": [
{
"href": "https://mylamp.example.com/oh",
"subprotocol": "longpoll"

}
]

},
"#/sdfObject/sdfObject0": {
"@context": "https://www.w3.org/2022/wot/td/v1.1",
"id": "urn:uuid:0804d572-cce8-422a-bb7c-4412fcd56f06",
"securityDefinitions": {
"basic_sc": {
"scheme": "basic",
"in": "header"

}
},
"security": "basic_sc"

}
}

}

Listing 4: Example SDFmapping file, containing the instance-specific information from Listings 1
and 2 not present in the SDF model in Listing 3.



{
"LampThing": {
"@context": ["https://www.w3.org/2022/wot/td/v1.1"],
"@type": "tm:ThingModel",
"properties": {

"status": {
"type": "string"

}
},
"links": [
{
"rel": "tm:submodel",
"href": "#/Switch"

}
]

},
"Switch": {
"@context": ["https://www.w3.org/2022/wot/td/v1.1"],
"@type": "tm:ThingModel",
"actions": {

"toggle": {}
}

}
}

Listing 5: Example for a Thing Model Collection with one top-level TM (LampThing) pointing
to a submodel TM (Switch) using a JSON Pointer (#/Switch).



{
"sdfThing": {
"LampThing": {
"sdfProperty": {
"status": {
"observable": false,
"type": "string"

}
},
"sdfObject": {
"Switch": {
"sdfAction": {
"toggle": {}

}
}

}
}

}
}

Listing 6: Example for a nested SDF model based on the TM Collection from Listing 5.


	1 Introduction
	2 Foundations
	2.1 Relevant Specifications and Standards
	2.2 Related Work

	3 Requirements
	4 Mappings between SDF and WoT
	5 Converter Design and Implementation
	6 Conclusion and Future Work
	A Appendix

